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SUMMARY

A parallel ILU preconditioning algorithm for the incompressible Navier–Stokes equations has been
designed, implemented and tested. The computational mesh is divided into N subdomains which are
processed in parallel in di�erent processors. During ILU factorization, matrices and vectors associated
with the nodes on the interface between the subdomains are communicated to the equation matrices to
the adjacent subdomain. The bases for the parallel algorithm are an appropriate node ordering scheme
and a segregation of velocity and pressure degrees of freedom. The inner nodes of the subdomain
are numbered �rst and then the nodes on the interface between the subdomains. To avoid division by
zero during the ILU factorization, the equations corresponding to the velocity degrees of freedom are
assembled �rst in the global equation matrix, followed by the equations corresponding to the pressure
degrees of freedom. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: parallel computation; a priori pivoting; segregation of variables; ILU preconditioning;
CGStab; sparse solvers; Navier–Stokes equations

1. INTRODUCTION

Large-scale simulations on single processors are usually limited by CPU time and the size of
the central memory. Parallel multiprocessors computation is frequently used to overcome such
limits. In this work a parallel �nite element solver based on ILU preconditioning, a priori
pivoting and segregation of variables are designed for the stationary Navier–Stokes system in
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its velocity–pressure formulation. An arbitrary number of processors can be used to perform
large-scale simulations with reduced CPU time.
A mixed �nite element approximation is considered with C0 Lagrangian interpolation for

both �elds, quadratic for velocity and linear for pressure, yielding an inde�nite, non-symmetric
and non-linear global system. Newton’s method is employed to solve the non-linear system
iteratively. To avoid division by zero during the ILU factorization of the linearized system,
a segregation of variable technique is applied. The equations corresponding to the velocity
degrees of freedom are assembled �rst in the global matrix, and at last the equations corre-
sponding to the pressure degrees of freedom which are the cause of the inde�niteness [1, 2].
During the parallel computation, adaptive meshing [3, 4] is applied to improve the �nite ele-
ment approximation and to improve the convergence performance of the iterative solver [5].
The global domain is divided into a number of subdomains. Due to the adaptation of the

mesh with respect to the solution the total number of elements increases with the increasing
Reynolds number and a new domain decomposition is required to balance the charge among
the processors. Approximately, equal number of elements is distributed to each satellite pro-
cessor.
Each satellite processor assembles the matrix corresponding to one subdomain and performs

the ILU decomposition [2]. The parallel processing [6] is based on iterative equation solvers
for non-symmetric systems [7–9].
In the parallel implementation of the ILU preconditioned algorithm the associated proces-

sors communicate matrices and vectors corresponding to the nodes on the interface between
adjacent subdomains.
The improved computational performance of the proposed parallel solver is due to the

adaptive meshing technique, ILU preconditioner, a priori pivoting and the segregation of
variables [10–13].
In the present algorithm the node ordering is essential. A di�erent, but functionally related

approach is presented in References [14, 15]. These algorithms introduce globally de�ned
preconditioners by mixing the clustered element-by-element preconditioning concept with in-
complete factorization methods.

2. THE NAVIER–STOKES EQUATIONS

The model problem is the stationary Navier–Stokes system

�u · ∇u − �∇2u+∇p= f in �⊂R2 (1)

−∇ · u=0 in � (2)

with homogeneous Dirichelet boundary conditions

u= 0 on �= @� (3)

in which u is the velocity vector, p is the pressure, � is the density and � is the viscosity
coe	cient. The �rst equation is the equation of motion which contains convection, di�usion
and pressure gradient terms. The second equation is the equation of continuity.
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A variational formulation of the Navier–Stokes system reads: Find the velocity u∈U =H 1
0

(�)×H 1
0 (�) and the pressure p∈Q=L(�)=R such that

a(u; u; v) + b(p; v) =f(v) ∀v∈U (4)

b(q; u) = 0 ∀q∈Q (5)

with

a(u;w; v) =
∫
�
[u · ∇w · v+ �∇u · ∇v − p∇ · v] d� (6)

b(q; u) =−
∫
�
∇ · uq d� (7)

f(v) =
∫
�
f · v d� (8)

We will consider mixed �nite element formulation with both velocities and pressure ap-
proximated using C0 Lagrangian interpolations with quadratic basis functions for velocities
and linear basis functions for pressure on each element. Denoting Uh ⊂U and Qh ⊂Q, the
corresponding C0 Lagrangian �nite element spaces for velocity and pressure �elds, leads to
the following Galerkin approximation of the Navier–Stokes equations:

a(uh; uh; vh) + b(ph; vh) =f(vh) ∀vh∈Uh (9)

b(qh; uh) = 0 ∀qh∈Qh (10)

3. FILL-IN RULES FOR INCOMPLETE GAUSSIAN FACTORIZATION

The �ll-in rule for ILU preconditioner of iterative solvers for general algebraic equations
is that �ll-in is accepted at locations in the equation matrix where the magnitude of the
coe	cients is above a prede�ned limit. The order of �ll-in is then determined by the size of
this limit. This �ll-in rule is not applicable for �nite element equations as the pressure matrix
is initially zero and would therefore never receive �ll-ins. A di�erent �ll-in rule for �nite
element equations is then introduced as follows.

First-order �ll-in: Fill-in is accepted at locations in the global matrix where

the nodes belong to the same element:

Left-part of Figure 1 highlights three nodes: one in the lower-left corner, the centre node
and the middle node at the upper edge. The right part of the �gure shows the nodes where
the degrees of freedom in the equation matrix receive �ll-in during the factorization.
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Figure 1. The �gure to the left shows three nodes in mesh. The �gure to the right indicate the locations
of �rst order �ll-in during factorization.

By applying this �ll-in rule, the desired �ll-in at the pressure locations in the continuity
equations will take place. Thus, if nodal numbering, and thereby also the elimination order
for the Gaussian factorization, is chosen carefully, the zeros at the pressure locations in the
continuity equation will introduce no problems during the incomplete elimination.

4. PROCESSOR COMMUNICATION

The logical architecture considered is shown in Figure 2. The control processor can com-
municate with all satellites, and the satellites can communicate with their logical neighbours
and the control processor. Communication primitives are restricted to point-to-point message
passing.
The �nite element computations are initiated in the control processor. The only function

of the control processor is to initiate the computations. The control processor transmits
the information needed by each satellite processor. When the �nite element computations
have been started, the satellite processors communicate with their neighbours in order to
update matrices and vectors when needed. There is no communication concerning the com-
putations between the control processor and any of the satellite processor after the
initiation.
The implementation is based on a model where each satellite runs in a process on a standard

computer networked with the other computers over Ethernet connected through a switch.
Figure 3 shows the connection between any two processors, with each process divided into
two threads running on the same processor. This is clearly a superset of the required logical
architecture, and subdividing into two threads provides the added bene�t of asynchronous
communication between processors. When sending a message, the thread doing the actual
calculations will queue the data in a fairly lightweight O(1) operations, while the heavier
O(N ) task of actually sending the message is left for the communicating thread to do in
parallel with other calculations. When receiving a message, the asynchronous nature of the
threads provides a bene�t if the data was received while the processor was busy doing other
work. Then, receiving a message is reduced to getting a pointer to data already in the process’
address space, which is a fairly low overhead operation performed in �xed time. Figure 4

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:977–996



PARALLEL ILU PRECONDITIONING THE NAVIER–STOKES EQUATIONS 981

Figure 2. The con�guration of a control processor and eight satellite processors. The control
processor initiates the satellite processors. Each satellite processor has a two way communi-

cation to the neighbour satellite processors.

Queue

Process

IO thread

Calculating thread

Queue

Process

IO thread

Calculating thread

Network

TCP/IP TCP/IP

Figure 3. Two random processors (master or satellite) connected through a network. Each process is
threaded, and the ‘queue’ communication is a constant overhead asynchronous operation while the TCP

communication is a synchronous linear overhead operation.

shows a simplistic example, roughly corresponding to vector elimination for two satellites,
of the di�erence between synchronous and asynchronous message passing. It is clear that the
asynchronous mode has the potential to make some message operations extremely cheap.
As with everything else, added complexity, in this case that of running multiple threads,

adds overhead. However, for the architecture at hand, this overhead is orders of magnitude
lower than the time spent sending even fairly short (only several bytes long) messages.
Additionally, the algorithm presented here is taylored to large messages, rendering the added
overhead negligible.

5. NODE ORDERING IN SATELLITE MESHES

The basis for the parallel ILU preconditioning is the node ordering sequence. The local
numbering of nodes for three subdomains is shown in Figure 5. The nodes in each subdomain

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:977–996
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calculate send to sat2 send result

send resultcalculate

calculate send to sat2 send result

send resultcalculate

idle

calculate

Satellite 1:

recv from sat1
Satellite 2:

Satellite 1:

calculate and recv
Satellite 2:

Figure 4. The potential di�erence between synchronous and asynchronous message passing.
In the synchronous case, satellite 1 must wait for satellite 2 to �nish calculating before the
message can be sent. When passing the message asynchronously, satellite 2 will receive a
message from satellite 1 while calculating, and when needing the data, and the message

passing overhead is reduced to a simple constant time dequeue operation.

are numbered from the centre towards the periphery, and except for the nodes at the upper and
lower interfaces, the inner nodes, are numbered �rst. Then the nodes at the upper interface
are numbered and at last the nodes at the lower interface.

6. SEGREGATION OF VARIABLES

The segregation of the velocity and pressure degrees of freedom is illustrated in Figure 6. The
velocity degrees of freedom for the inner nodes of the subdomain are assembled before the
pressure degrees of freedom for the inner nodes. The degrees of freedom for the interface are
then assembled by segregating the variables in the same fashion, �rst the velocity degrees of
freedom, then the pressure degrees of freedom for the lower interface, and �nally the velocity
and pressure degrees of freedom for the upper interface.

7. STRUCTURE OF SATELLITE MATRICES

The numbering of nodes in each subdomain as shown in Figure 5 creates a �nite element
submatrix to be processed in each satellite processor as shown in Figure 6. The A matrices
correspond to velocity degrees of freedom. The B matrices are the coupling matrices between
velocity and pressure, while the C matrices correspond to the continuity equations. The pres-
sure matrices P are initially equal to zero due to the absence of the pressure in the continuity
equations. The index I refers to the inner nodes, the index R refers to the nodes on the
upper interface and the index T refers to the nodes on the lower interface. The matrix AII
is thus the velocity matrix corresponding to the inner nodes. The matrix BII is the coupling
matrix between the velocities and pressures for the inner nodes. The matrix CII contains the
continuity equations for the inner nodes. The pressure matrix for the inner nodes is PII. The
matrices AIR, BIR are coupling velocity–velocity and velocity–pressure matrices between the
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Figure 5. A mesh which is divided into three subdomains for parallel processing. The node numbering
of each subdomain is divided in interior, receiving and transmitting nodes. The interior nodes are nodes
1–127. The receiving nodes are the nodes 128–136 and the transmitting nodes are the nodes 137–145.

The interfaces between adjacent subdomains are the receiving and transmitting nodes.
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Figure 6. Finite element matrix of each subdomain. The matrix AII corresponds to the
internal degrees of freedom, the matrices ARR ATT corresponds to the degrees of freedom
on the interface to adjacent subdomains. The zero matrices, 0 originate because there are

no coupling between the nodes of the two interfaces.

inner nodes and nodes on the upper interface. The matrix CIR is the continuity equations for
the coupling of inner nodes and nodes on the upper interface. The matrices AIT, BIT and CIT
are corresponding matrices for the coupling between the inner nodes and the lower interface.
The matrices for the degrees of freedom for the reverse coupling, the coupling between the
nodes on the upper and lower interfaces, are contained in the matrices ARI, BRI, CRI, PRI and
ATI, BTI, CTI, PTI, respectively. The matrices ARR, BRR, CRR, PRR correspond to the degrees of
freedom of the nodes on the upper interface and the matrices ATT, BTT, CTT, PTT correspond
to the degrees of freedom of the nodes on the lower interface. The two 0 matrices arise from
the absence of coupling between the degrees of freedom of the nodes on the upper and lower
interfaces.
The element matrices described above contain a large number of coe	cients which are

zero. A sparse storage structure, which is shown in Figure 7 is therefore used. The sparse
storage structure in Figure 7 is for two-dimensional simulations. The pointer, pdv[ni] + i,
where ni is the node number, i=1 and 2 are the u-velocity and the v-velocity, respectively,
is pointing to the position in matrix column vector pac where the beginning of a row starts
in the row vector par. The vector pac contains the address, pdv[nj] + j, when the degree of
freedom is present in the equation matrix. The matrix coe	cients are contained in a vector
with the same size as the vector pac. The addresses of the pressure coe	cients are obtained
in a similar way.
Figure 8 shows the sparse pattern of the coe	cients in the �nite element equation matrix,

which corresponds to each submesh, with node ordering given in Figure 5. The upper diag-
onal matrix shows the sparse pattern of the degrees of freedom of the internal nodes. The

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:977–996
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Figure 7. Sparse storage structure of the �nite element matrix of each subdomain. The vector pac
contain pointers to par, the location of the beginning of each row. The vector par contains the nodes

above the diagonal which are present in each row.
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Figure 8. Sparse pattern of the �nite element equation matrix of each subdomain.

small middle diagonal matrix shows the sparse pattern of the matrix which corresponds the
upper boundary of the submesh. The small lower diagonal matrix shows the sparse pattern
of the matrix which corresponds to the lower boundary of the submesh. In the matrices for
internal nodes, upper boundary nodes and lower boundary nodes, the pressure gradient is
assembled the right strip and the continuity equations is assembled in the lower strip. The
coupling between internal nodes and upper boundary nodes is the �rst right and the �rst lower
rectangle. The coupling between internal nodes and lower boundary nodes is the second right
and the second lower rectangle. The 0 matrices in Figure 6 are also shown in Figure 8,
where it is clearly seen that there is no coupling between the nodes on the upper and lower
interfaces.

8. PARALLEL NUMERICAL ALGORITHM

The algorithms below show the elimination of each subdomain element matrix, Section 8.1,
the vector elimination, Section 8.2, and vector substitution, Section 8.3, of the equation system
in Figure 6. The superscript n denotes the satellite processor or subdomain number. The total
number of satellite processors is MPR. These three algorithms are all executed in parallel
on each satellite processor, except for some short events in the communication among the
satellite processors.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:977–996
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2

4

1

3

Figure 9. Two-dimensional mesh divided in four subdomains for Reynolds number 400. The mesh has
been adaptively re�ned during the computations.

The elimination of the element matrix corresponding to the inner degrees of freedom, starts
with the elimination of AnII and P

n
II . During the elimination of A

n
II su	cient �ll-ins have

occurred in PnII , so division by zero during the elimination of P
n
II is avoided. At this point

there will be no more contributions to the matrix AnTT and P
n
TT during the further elimination

due to the two 0 matrices. Then the matrices An−1TT and Pn−1TT from the preceding subdomain
is added into the matrices AnRR and P

n−1
RR of the present subdomain. The last step in the

forward elimination, is the elimination of the matrices AnRR and P
n
RR, which correspond to

the degrees of freedom at the upper interface. During the elimination of AnRR, again �ll-ins
have occurred in PnRR, so the elimination of P

n
RR creates no problems. The exceptions in the

algorithm are for the �rst and the last subdomains. Since the �rst subdomain, n=1 has no
preceding subdomain, the addition of the matrices An−1TT and Pn−1TT are omitted. For the last
subdomain, the matrices AnTT and P

n
TT are also eliminated.

The forward elimination of the right-hand side, algorithm 8.2, follow the same path. First,
the right-hand sides, bA

n

I and bP
n

I , corresponding to the inner degrees of freedom are eliminated.
The vectors bA

n−1

T and bP
n−1

T corresponding to the degrees of freedom at the lower interface of
the preceding subdomain is added into the vectors bA

n

R and bP
n

R corresponding to the degrees
of freedom at the upper interface of the present subdomain. The right-hand sides, bA

n

R and bP
n

R ,
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4

1

2

3

Figure 10. Two-dimensional velocity vector solution for the driven cavity �ow for Reynolds number
400, computed on four satellite processors.

corresponding to the degrees of freedom at the upper interface is eliminated. The exceptions
in the algorithm are again for the �rst and the last subdomains. For the �rst subdomain there
is no contribution from the preceding subdomain so the addition of bA

n−1

T and bP
n−1

T into bA
n

R
and bP

n

R is skipped. For the last subdomain, the elimination of bA
n

T and bP
n

T , corresponding to
the nodes of the lower edge, is performed.
The backward substitution algorithm, Section 8.3, has an exception for the last subdomain,

n=MPR. For the last subdomain, there is an additional substitution of bP
n

T and bA
n

T , corre-
sponding to the degrees of freedom at the lower edge. For all subdomains there is a backward
substitution of the vectors bP

n

R and bA
n

R , corresponding to the degrees of freedom at the upper
interface. Then bP

n

T is replaced by bP
n+1

R and bA
n

T is replaced by bA
n+1

R , since the solution for the
degrees of freedom for the lower interface is already found in the proceeding subdomain. At
last, the degrees of freedom corresponding to the inner degrees of freedom in each subdomain
are found by the substitution of bP

n

I and bA
n

I .
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1

2

3

4

Figure 11. Two-dimensional pressure isobar solution for the driven cavity �ow for Reynolds number
400, computed on four satellite processors.

8.1. Matrix elimination
Eliminate AnII; P

n
II

if (n¿1) AnRR =A
n
RR +A

n−1
TT ; PnRR =P

n
RR + P

n−1
TT

Eliminate AnRR ; P
n
RR

if (n=MPR) Eliminate AnTT; P
n
TT

8.2. Vector elimination

Eliminate bA
n

I ; b
Pn
I

if (n¿1) bA
n

R = b
An
R + b

An−1

T ; bP
n

R = b
Pn
R + b

Pn−1

T

Eliminate bA
n

R ; b
Pn
R

if (n=MPR) Eliminate bA
n

T ; b
Pn
T
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Figure 12. Two-dimensional pressure isobar solution for the driven cavity �ow for Reynolds number
400, computed on four satellite processors.

8.3. Vector substitution

if (n=MPR) Substitute bP
n

T ; b
An
T

Substitute bP
n

R ; b
An
R

if (n¡MPR) bP
n

T = b
Pn+1
R ; bA

n

T = b
An+1
R

Substitute bP
n

I ; b
An
I

9. NUMERICAL EXPERIMENTS

The test problem for the exploration of the solution algorithm is the driven cavity problem. An
initial cube with corners in the co-ordinates in (±0:5;±0:5;±0:5), is divided in 12 tetrahedra,
each with one node in the centre of the cube and the three other nodes on one of the surfaces
on the cube. The cavity is then re�ned by the algorithm given by Reference [4], where each
tetrahedron is divided in eight new tetrahedra. This re�nement procedure is continued until
the wanted degree of re�nement is obtained. The computational domain is then divided in the
four submeshes shown in Figure 9.
The �nite elements are sorted with respect to a point far along the central axis in the

y-direction. The far point is chosen far enough to obtain a compact node numbering within
each layer of nodes. This ordering ensures that there are no jumps in no numbering between
node layers.
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Figure 13. Three-dimensional mesh divided in four subdomains for Reynolds number 400. The mesh
has been adaptively re�ned during the computations.

The boundary conditions for the driven 3D cavity are u=[u; v; w]= [umax; 0; 0] one the
upper surface of the cavity and the no slip condition, u=[0; 0; 0] on the other surfaces. The
Reynolds number

Re=
umax d
�

(11)

is increased or decreased by corresponding increase or decrease of umax. A reasonably good
initial guess of the solution vector is obtained by scaling of the solution for the previous
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Figure 14. Three-dimensional velocity vector solution for the driven cavity �ow for Reynolds number
400 computed on four satellite processors.

Reynolds number by the ratio

un= un−1
umaxn
umaxn−1

(12)

where the n denotes the transition from one Reynolds number to the next.
The number of Newton iterations is �xed to 5 and the convergence criterion for the linear

iterations is the norm of residual normalized by umax and equal to

|r|
umax

¡�L=10−5 (13)
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Figure 15. Three-dimensional pressure isobar solution for the driven cavity �ow for Reynolds number
400 computed on four satellite processors.

In the parallel processing, N=4 elements are distributed to each satellite processor in chrono-
logical order. The mesh is adaptively re�ned and coarsened with the ratio of the convection to
the di�usion, the Element Reynolds number, as re�nement–recoarsement indicator. Figure 10
shows the velocity vector �eld computed by four parallel processors and Figure 11 shows the
pressure isobars. In Figure 12, the pressure isobars are displayed slightly rotated.
Figure 13 shows the three-dimensional mesh for parallel processing of a three-dimensional

driven cavity. The three-dimensional velocity �eld is displayed in Figure 14 and the pressure
isobars are shown in Figure 15.
Figures 16 and 17 show the initialization time of the preconditioner, i.e. is the time for

constructing the preconditioner in each satellite processor, for Reynolds number 400 and 800,
respectively, as a function of number of satellites. As seen from the �gures, the initialization
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Figure 16. Initialization time for Reynolds number 400.
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Figure 17. Initialization time for Reynolds number 800.

time decreases as more satellites are added. Figures 18 and 19 show the communication
time, computation time and the total iteration time for Reynolds number 400 and 800. The
iteration time is the time used in each satellite processor, which is approximately equal and
coincides for all the satellite processors. The communication time is the time used in the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:977–996



PARALLEL ILU PRECONDITIONING THE NAVIER–STOKES EQUATIONS 995

0

50000

100000

150000

200000

250000

300000

350000

400000

2 4 6 8 10 12 14 16

tim
e 

(m
s)

Number of satellites

Total time
Communication time

Computation time

Figure 18. Iteration time for Reynolds number 400.
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Figure 19. Iteration time for Reynolds number 800.

communication between two processors, which is also approximately equal and coincides for
the communication between the satellite processors. The total time is therefore the sum of
the iteration time, communication time and the time used by the control processor. The time
curves show to �atten versus number of satellite processors. For few �nite elements, the
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initialization time for the parallel computations and communications is dominant. When the
amount of data communicated is less than the package size, the constant package size in the
communication will also contribute to the �attening of the communication time. The time
curves show that there is no increase in e	ciency followed by an increase in the number of
satellite processor above 8 for the present mesh.

10. DISCUSSION

Parallel algorithms for the generation of �nite element matrices, the matrix–vector product
and the full matrix ILU preconditioner have been developed. The behaviour of the algorithms
have been explored for computations in two and three dimensions. The e	ciency of the
algorithms is demonstrated by the measurements of the communication time and computation
time for various Reynolds numbers and number of satellite processor. The total solution time
for solving speci�c problems have been shown to decrease with increasing number of satellite
processor.
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